
Lecture 5

Matrix-Matrix Product

Based on the lecture materials of Hwu (UIUC) and Kirk (NVIDIA)

Matrix Multiplication

• Simple version first
– illustrate basic features of memory and thread

management in CUDA programs

– Thread ID usage

– Memory data transfer API between host and
device

– Analyze performance

• Extend to version which employs shared
memory

Square Matrix Multiplication

• P = M * N of size WIDTH x WIDTH

• Without tiling:

– One thread calculates one element

of P

– M and N are loaded WIDTH times

from global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

M0,0

M0,1

M0,2

M0,3

M1,0

M1,1

M1,2

M1,3

M2,0

M2,1

M2,2

M2,3

M3,0

M3,1

M3,2

M3,3

C order
Fortran/Matlab

order

This order will be important to compute the location of the element

in the matrix according to thread and block indices

Step 1: Simple Host Version

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host
void MatrixMulOnHost(float* M, float* N, float* P, int Width)

{

for (int i = 0; i < Width; ++i)�

for (int j = 0; j < Width; ++j) {

double sum = 0;

for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];

double b = N[k * width + j];

sum += a * b;

}

P[i * Width + j] = sum;

}

}
i

k

k

j

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)�

{
int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;

…

// 1. Allocate and Load M, N to device memory
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 2: Transfer Data to Device from Host

Step 3: Output Matrix Data Transfer
(Host-side Code)�

2. // Kernel invocation code – to be shown later

…

3. // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)�

{

// Pvalue is used to store the element of the matrix

// that is computed by the thread

float Pvalue = 0;

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 4: Kernel Function (cont.)�

for (int k = 0; k < Width; ++k)� {

float Melement = Md[threadIdx.y*Width+k];
float Nelement = Nd[k*Width+threadIdx.x];
Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k

// Setup the execution configuration

dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation

(Host-side Code)

First version: One Thread Block
• One Block of threads compute

matrix Pd

– Each thread computes one
element of Pd

• Each thread

– Loads a row of matrix Md

– Loads a column of matrix Nd

– Perform one multiply and
addition for each pair of Md
and Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not
very high)�

• Size of matrix limited by the
number of threads allowed in a
thread block

– It is 512. So the number
allowed is <23

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

(2, 2)�

WIDTH

Md Pd

Nd

Extend to Arbitrary Sized Square Matrices

• Use more than one block

• Have each 2D thread block to compute

a (TILE_WIDTH)2 sub-matrix (tile) of the
result matrix

– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of
(WIDTH/TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop

around the kernel call for cases

where WIDTH/TILE_WIDTH

is greater than max grid size

(64K)!

TILE_WIDTH

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Matrix Multiplication Using

Multiple Blocks

• Break-up Pd into tiles

• Each block calculates

one tile

– Each thread calculates one
element

– Block size equal tile size

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

A Small Example

Pd1,0

A Small Example: Multiplication

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Revised Matrix Multiplication

Kernel using Multiple Blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;}

Note how the Row and Column indices are computed.

Analysis of this version

• Each thread loads 2*Width elements and from
global memory and does that many floating point
computations
– So this version does one flop per 4 byte memory load

• On a G80 bandwidth of memory transfer from
global memory is ~ 86 GB/sec, and so we are
limited to ~ 21 G floating point loads
– Flop rate is also limited to this number.

• But the 8800 GTX is supposed to achieve ~ 340
Gflops
– Need to use shared memory and fo more

computations per global memory access.

Hardware Implementation:

Memory Architecture
• The local, global, constant,

and texture spaces are

regions of device memory

• Each multiprocessor has:

– A set of 32-bit registers per
processor

– On-chip shared memory

• Where the shared memory

space resides

– A read-only constant cache

• To speed up access to the

constant memory space

– A read-only texture cache

• To speed up access to the

texture memory space

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant

Cache

Texture

Cache

Global, constant, texture memories

More Terminology Review

• device = GPU = set of multiprocessors

• Multiprocessor = set of processors & shared memory

• Kernel = GPU program

• Grid = array of thread blocks that execute a kernel

• Thread block = group of SIMD threads that execute a
kernel and can communicate via shared memory

One threadRead/writeNoOff-chipLocal

All threads in a
block

Read/writeN/A -
resident

On-chipShared

All threads + hostRead/writeNoOff-chipGlobal

All threads + hostReadYesOff-chipConstant

All threads + hostReadYesOff-chipTexture

WhoAccessCachedLocationMemory

Access Times
• Register – dedicated HW - single cycle

• Shared Memory – dedicated HW - single cycle

• Local Memory – DRAM, no cache - *slow*

• Global Memory – DRAM, no cache - *slow*

• Constant Memory – DRAM, cached,

1…10s…100s of cycles, depending on cache

locality

• Texture Memory – DRAM, cached,

1…10s…100s of cycles, depending on cache

locality

• Instruction Memory (invisible) – DRAM, cached

Language Extensions:
Variable Type Qualifiers

• __device__ is optional when used with
__local__, __shared__, or __constant__

• Automatic variables without any qualifier reside in
a register
– Except arrays that reside in local memory

blockblockshared__device__ __shared__ int SharedVar;

applicationgridglobal__device__ int GlobalVar;

threadthreadlocal__device__ __local__ int LocalVar;

grid

Scope

applicationconstant__device__ __constant__ int ConstantVar;

LifetimeMemory

Variable Type Restrictions

• Pointers can only point to memory
allocated or declared in global memory:

– Allocated in the host and passed to the

kernel:

__global__ void KernelFunc(float*

ptr)

– Obtained as the address of a global variable:
float* ptr = &GlobalVar;

A Common Programming Strategy

• Global memory resides in device memory (DRAM)

- much slower access than shared memory

• So, a profitable way of performing computation on

the device is to tile data to take advantage of fast

shared memory:

– Partition data into subsets that fit into shared memory

– Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory,
using multiple threads to exploit memory-level parallelism

• Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over any data
element

• Copying results from shared memory to global memory

A Common Programming Strategy (Cont.)

• Constant memory also resides in device memory

(DRAM) - much slower access than shared

memory

– But… cached!

– Highly efficient access for read-only data

• Carefully divide data according to access patterns

– R/Only � constant memory (very fast if in cache)

– R/W shared within Block � shared memory (very fast)

– R/W within each thread � registers (very fast)

– R/W inputs/results � global memory (very slow)

Texture memory -- later

Idea: Use Shared Memory to reuse

global memory data
• Each input element is

read by Width threads.

• Load each element into

Shared Memory and

have several threads

use the local version to

reduce the memory

bandwidth

– Tiled algorithms

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Break up the execution of the

kernel into phases so that the

data accesses in each phase is

focused on one subset (tile) of

Md and Nd

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Breaking Md and Nd into Tiles

Each phase of a Thread Block uses

one tile from Md and one from Nd

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,3

↓

Nds1,1

Md3,1

↓

Mds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,1

↓

Nds1,1

Md1,1

↓

Mds1,1

T1,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,3

↓

Nds0,1

Md2,1

↓

Mds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,1

↓

Nds0,1

Md0,1

↓

Mds0,1

T0,1

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,2

↓

Nds1,0

Md3,0

↓

Mds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,0

↓

Nds1,0

Md1,0

↓

Mds1,0

T1,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,2

↓

Nds0,0

Md2,0

↓

Mds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,0

↓

Nds0,0

Md0,0

↓

Mds0,0

T0,0

Step 6Step 5Step 4Phase 1 Phase 2

time

Threads, Warps, Blocks

• There are (up to) 32 threads in a Warp

– Only <32 when there are fewer than 32 total
threads

• There are (up to) 16 Warps in a Block

• Each Block (and thus, each Warp) executes on

a single SM

• G80 has 16 SMs

• At least 16 Blocks required to “fill” the device

• More is better

– If resources (registers, thread space, shared
memory) allow, more than 1 Block can occupy each

SM

First-order Size Considerations in G80

• Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks

– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float loads

from global memory for 256 * (2*16) = 8,192

mul/add operations.

– Memory bandwidth no longer a limiting factor

CUDA Code – Kernel

Execution Configuration
// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width / TILE_WIDTH,

Width / TILE_WIDTH);

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];

2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];

11. __syncthreads();

11. for (int k = 0; k < TILE_WIDTH; ++k)

12. Pvalue += Mds[ty][k] * Nds[k][tx];

13. Synchthreads();

14. }

13. Pd[Row*Width+Col] = Pvalue;

}

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Each block computes one

square sub-matrix Pdsub of size
TILE_WIDTH

• Each thread computes one

element of Pdsub

m

kbx

by

k

m

G80 Shared Memory and Threading

• Each SM in G80 has 16KB shared memory

– SM size is implementation dependent!

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB
of shared memory.

– Can potentially have up to 8 Thread Blocks actively executing

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256

threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB
shared memory usage per thread block, allowing only up to two
thread blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16

– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6
GFLOPS!

Tiling Size Effects

0

10

20

30

40

50

60

70

80

90

100

til
e
d

o
n
ly

til
e
d
 &

u
n
ro

lle
d

til
e
d

o
n
ly

til
e
d
 &

u
n
ro

lle
d

til
e
d

o
n
ly

til
e
d
 &

u
n
ro

lle
d

til
e
d

o
n
ly

til
e
d
 &

u
n
ro

lle
d

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

