Case Study — Matrix Multiplication

SYDNEY

THE UNIVERSITY OF

SYDNEY

Introduction

» Serve as an example of design exploration of matrix multiplication

» While examples are for a processor with cache, they are equally valid for an
FPGA with external memory

Outline

» Performance Modeling
» Matrix-Vector Multiply (Warmup)
» Matrix Multiply Cache Optimizations

THE UNIVERSITY OF

SYDNEY

Why Matrix Multiplication?

» An important kernel in many problems
- Appears in many linear algebra algorithms
- Bottleneck for dense linear algebra
- One of the 7 dwarfs / 13 motifs of parallel computing

- Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-
Warshall

» Optimization ideas can be used in other problems
» The best case for optimization payoffs

» The most-studied algorithm in high performance computing

Slide: James Demmel UCB

SYDNEY Motif/Dwarf; Common Computational Methods

*

— Blue Cool)

g (&) o y
2 S © | g4 h 4] e
E o m s J ol i o
w o O O = I |Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal

5 Dense Matrix

7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models
13 Unstructured Grid

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Matrix-multiply, optimized several ways

N x N Mairix Mullply [UH@-1/170)
1

ESun Per.Lb 12

250 _.% .

ey N | O SR SRT— imnmeins e sl s AER— ARTR— SR |

N 1 S S N U S S I I]

Perliormance (Mikp/s)

100 - eeeeinnns] e snan s tn AORR— e o e st RRI— AROR—— A— -

| ISR SRS R O SRRSO FUUURRR RSO SRS SRU e i

C, 3-neslad kbops (Sun oo, ull opi.)

o i i i i i i i
0 100 200 200 400 500 600 700 800
N

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Note on Matrix Storage

» A matrix is a 2-D array of elements, but memory addresses are “1-D”
» Conventions for matrix layout

- by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
- by row, or “row major” (C default) A(i,j) at A+i*n+jColumn major matrix in memory

- recursive (later) | | | |

Column major Row major} | | | | | | | |

0| 5 (10|15 O|1| 2] 3 | | |
1|16 | 11|16 4 | 516 |7

2 | 7 |12 |17 8 | 9 10| 11

3 | 8 [13]|18 12 113 |14 | 15

4 19 (14]19 16 | 17 | 18 | 19

cachelines

_ Blue row of matrix is
» Column major (for now) stored in red cachelines

Slide: James Demmel UCB Figure source: Larry Carter, UCSD

THE UNIVERSITY OF

SYDNEY Using a Simple Model of Memory to Optimize

» Assume just 2 levels in the hierarchy, fast and slow

» All data initially in slow memory

m = number of memory elements (words) moved between fast and slow memory

t.. = time per slow memory operation Computational

f = number of arithmetic operations Intensity: Key to
_ . _ . algorithm efficiency
t. = time per arithmetic operation <<'t_

- |g = f/ m average number of flops per slow memory access

» Minimum possible time = * t. when all data in fast memory

» Actual time
| Machine
- f>x<tf—}_rn*tm:f*tf*(1—{_trn/tf l/q) Balance:
Key to
_ . . machine
» Larger @ means time closer to minimum f * t; efficiency

- q =t /t; needed to get at least half of peak speed
Slide: James Demmel UCB

Warm up: Matrix-vector multiplication

{implements y =y + A*x}
fori=1:n
forj=1:n
y(i) = y(i) + A(i.,j)"x()

y(i) y(i) x(:)

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
fori=1:n
{read row i of A into fast memory}
forj=1:n
y(i) = y(i) + A(i.,j)"x()
{write y(1:n) back to slow memory}

* m = number of slow memory refs = 3n + n?
« f = number of arithmetic operations = 2n?
eq =f/m=2

« Matrix-vector multiplication limited by slow memory speed

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Modeling Matrix-Vector Multiplication

» Compute time for nxn = 1000x1000 matrix

» Time
-f*tetm*t =f*e* (1 +t /t *1/q)
- =2*n? *t.* (1 + t /t;* 1/2)
» Fort;and t,, using data from R. Vuduc’s PhD (pp 351-3)
- http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

- For t,, use minimum-memory-latency / words-per-cache-line

Clock Peak Mem Lat (Min,Max) Linesize |t_m/t f)
MHz Mflop/s cycles Bytes machine
Ultra 2i 333 667 38 66 16 24.8 ba’a""‘f
Ultra 3 900 1800 28 200 32 14.0 foqe’:tulz et
Pentium 3 500 500 25 60 32 6.3| g co-
Pentium3N\ 800 800 40 60 32 10.0] 4, Coak
Power3 375 1500 35 139 128 8.8| speed)
Power4 1300 5200 60 10000 128 15.0
ltanium 1 800 3200 36 85 32 36.0
ltanium?2 900 3600 11 60 64 5.5

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Simplifying Assumptions

» What simplifying assumptions did we make in this analysis?

- Ignored parallelism in processor between memory and arithmetic within the
processor

- Sometimes drop arithmetic term in this type of analysis
- Assumed fast memory was large enough to hold three vectors

- Reasonable if we are talking about any level of cache

- Not if we are talking about registers (~32 words)
- Assumed the cost of a fast memory access is O

- Reasonable if we are talking about registers

- Not necessarily if we are talking about cache (1-2 cycles for L1)
- Memory latency is constant

» Could simplify even further by ignoring memory operations in X and Y
vectors

- Mflop rate/element =2/ (2"t +1t,)

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Validating the Model

» How well does the model predict actual performance?
- Actual DGEMYV: Most highly optimized code for the platform
» Model sufficient to compare across machines
» But under-predicting on most recent ones due to latency estimate

(ignoring X,Yy)
1200 m Pre DGEMV Mflops
1000 (with x,y)
) m Actual DGEMV
g 800 (MFLOPS)
LL
=

Ultra 2i Ultra3 Pentium 3 Pentium3M Power3 Power4 [tanium1 [tanium2

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Naive Matrix Multiply

{implements C = C + A*B}

fori=1ton
forj=1ton
fork=1ton

C(i,j) = C(i,j) + A(i.k) " B(k,))

Algorithm has 2*n3 = O(n3) Flops and operates on
3*n? words of memory

q potentially as large as 2*n3/ 3*n? = O(n)

C(i,) C(i,j) Ali.2)

B B I B(:,j)

I
+
*

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Naive Matrix Multiply

{implements C = C + A*B}

fori=1ton
{read row i of A into fast memory}
forj=1ton

{read C(i,j) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(i.j) = C(i.j) + A(i.k) " B(k,))
{write C(i,j) back to slow memory}

C(i) C(i) Ali)

B B I B(:,j)

I
+
*

Slide: James Demmel UCB

THE UNIVERSITY OF

== SYDNEY Naive Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n3 to read each column of B n times
+n? to read each row of A once
+ 2n’ to read and write each element of C once
= n3 + 3n?
Soq=f/m=2n°/(n*+ 3n?)
~ 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of Atimes B
Similar for any other order of 3 loops

C(i,) C(i,j) Ali.2)
O O —

I
+
*

Slide: James Demmel UCB

THE UNIVERSITY OF

=22y SYDNEY

*

Matrix-multiply, optimized several ways

Nx N Mairix Muliply UHa-1/170]

a00
‘Sun Par.Lb 1.2
250 - H-4 . B R B T R T EE R PP
- o] T L -
w
g
=
51504,, -
m
E
]
o
o
100 B S -
7 ISR SO SR SR SN RRRE SOTRRURURUIURS SRRSO R SR i
C, 3-nesad bops (Sun oc, full gpi.)
o i i i i i i i
0 100 200 200 400 500 600 700 800

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where b=n/Nis
called the block size

fori=1toN
forj=1to N

{read block C(i,j) into fast memory}

fork=1to N
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

C(i,j) C(i,j) A(i,k)
B il l

|
+
*

m B))

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Blocked (Tiled) Matrix Multiply

Recall:

m is amount memory traffic between slow and fast memory

matrix has nxn elements, and NxN blocks each of size bxb

f is number of floating point operations, 2n3 for this problem

g = f/ mis our measure of algorithm efficiency in the memory system
So:

m = N*n? read each block of B N3 times (N3 * b% = N3 * (n/N)2=N*n?)
+ N*n2 read each block of A N3 times
+2n2 read and write each block of C once
= (2N + 2) * n?

So computational intensity g =f/ m =2n3/ ((2N + 2) * n?)
~n/N=Db forlargen

So we can improve performance by increasing the blocksize b

Can be much faster than matrix-vector multiply (q=2)

Slide: James Demmel UCB

THE UNIVERSITY OF
ke

<~y SYDNEY Using Analysis to Understand Machines

The blocked algorithm has computational intensity q = b
» The larger the block size, the more efficient our algorithm will be

» Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot
make these blocks arbitrarily large

» Assume your fast memory has size M

3b%2 <M.y, SO q=Db = (My,/3)"? required
t mitf KB
 To build a machine to run matrix multiply at Ultra 2i 24.8 14.8
1/2 peak arithmetic speed of the machine, Ultra 3 14 4.7
we need a fast memory of size Pentium 3 6.25 0.9
Mfast > 3h2 = 3q2 = 3(tm/tf)2 Pentium3M 10 2.4
Power3 8.75 1.8

« This size is reasonable for L1 cache, but not

for register sets Power4 15 5.4
Note: Vs . iole t ltanium 36 31.1
ote: analysis assumes it is possible to tanium? 5 e 07

schedule the instructions perfectly

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY

Summary

» Described a way to think about computation and memory — computational
intensity

» Introduced the concept of blocking to increase computational intensity

THE UNIVERSITY OF

SYDNEY

Review Exercises

» Explain in your own words:
- Computational intensity

» Do a similar analysis computational intensity analysis for a different algorithm
e.g. FFT

22

