Case Study – Matrix Multiplication

- > Serve as an example of design exploration of matrix multiplication
- While examples are for a processor with cache, they are equally valid for an FPGA with external memory

- > Performance Modeling
- Matrix-Vector Multiply (Warmup)
- Matrix Multiply Cache Optimizations

Why Matrix Multiplication?

- > An important kernel in many problems
 - Appears in many linear algebra algorithms
 - Bottleneck for dense linear algebra
 - One of the 7 dwarfs / 13 motifs of parallel computing
 - Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-Warshall
- > Optimization ideas can be used in other problems
- > The best case for optimization payoffs
- > The most-studied algorithm in high performance computing

Motif/Dwarf: Common Computational Methods (Red Hot → Blue Cool)

	Embed	SPEC	DB	Games	M	HPC	Health	Image	Speech	Music	Browser
1 Finite State Mach.											
2 Combinational											
3 Graph Traversal			_								
4 Structured Grid											
5 Dense Matrix											
o sparse matrix		_									
7 Spectral (FFT)											
8 Dynamic Prog											
9 N-Body											
10 MapReduce											
11 Backtrack/ B&B											
12 Graphical Models											
13 Unstructured Grid											

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

- A matrix is a 2-D array of elements, but memory addresses are "1-D"
- > Conventions for matrix layout
 - by column, or "column major" (Fortran default); A(i,j) at A+i+j*n
 - by row, or "row major" (C default) A(i,j) at A+i*n+jColumn major matrix in memory
 - recursive (later)

Slide: James Demmel UCB Figure source: Larry Carter, UCSD

- > Assume just 2 levels in the hierarchy, fast and slow
- > All data initially in slow memory
 - m = number of memory elements (words) moved between fast and slow memory
 - t_m = time per slow memory operation
 - f = number of arithmetic operations
 - t_f = time per arithmetic operation << t_m

- q = f / m average number of flops per slow memory access

- > Minimum possible time = $f^* t_f$ when all data in fast memory
- > Actual time

-
$$f * t_f + m * t_m = f * t_f * (1 + t_m/t_f * 1/q)$$

Machine
Balance:
Key to
machine

> Larger q means time closer to minimum f * $t_{\rm f}$

- $q \ge t_m/t_f$ needed to get at least half of peak speed

Slide: James Demmel UCB

Computational Intensity: Key to algorithm efficiency

efficiency

Warm up: Matrix-vector multiplication

```
{implements y = y + A*x}
for i = 1:n
for j = 1:n
y(i) = y(i) + A(i,j)*x(j)
```



```
{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n
    {read row i of A into fast memory}
    for j = 1:n
        y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}
```

- m = number of slow memory refs = $3n + n^2$
- f = number of arithmetic operations = $2n^2$
- q = f / m ≈ 2
- Matrix-vector multiplication limited by slow memory speed

Modeling Matrix-Vector Multiplication

Compute time for nxn = 1000x1000 matrix

> Time

- $f * t_f + m * t_m = f * t_f * (1 + t_m/t_f * 1/q)$
- $= 2*n^2 * t_f * (1 + t_m/t_f * 1/2)$
- > For t_f and t_m , using data from R. Vuduc's PhD (pp 351-3)
 - http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
 - For t_m use minimum-memory-latency / words-per-cache-line

	Clock	Peak	Mem Lat (Min,Max)	Linesize	t_m/t_f
	MHz	Mflop/s	сус	les	Bytes	
Ultra 2i	333	667	38	66	16	24.8
Ultra 3	900	1800	28	200	32	14.0
Pentium 3	500	500	25	60	32	6.3
Pentium3N	800	800	40	60	32	10.0
Power3	375	1500	35	139	128	8.8
Power4	1300	5200	60	10000	128	15.0
ltanium1	800	3200	36	85	32	36.0
ltanium2	900	3600	11	60	64	5.5

ine ce st least **or** K

- > What simplifying assumptions did we make in this analysis?
 - Ignored parallelism in processor between memory and arithmetic within the processor
 - Sometimes drop arithmetic term in this type of analysis
 - Assumed fast memory was large enough to hold three vectors
 - Reasonable if we are talking about any level of cache
 - Not if we are talking about registers (~32 words)
 - Assumed the cost of a fast memory access is 0
 - Reasonable if we are talking about registers
 - Not necessarily if we are talking about cache (1-2 cycles for L1)
 - Memory latency is constant
- Could simplify even further by ignoring memory operations in X and Y vectors
 - Mflop rate/element = 2 / $(2^* t_f + t_m)$

Validating the Model

- > How well does the model predict actual performance?
 - Actual DGEMV: Most highly optimized code for the platform
- Model sufficient to compare across machines
- > But under-predicting on most recent ones due to latency estimate

Naïve Matrix Multiply

```
{implements C = C + A^*B}
for i = 1 to n
for j = 1 to n
for k = 1 to n
C(i,j) = C(i,j) + A(i,k) * B(k,j)
```

Algorithm has $2^n^3 = O(n^3)$ Flops and operates on 3^n^2 words of memory

q potentially as large as $2^n^3 / 3^n^2 = O(n)$

Naïve Matrix Multiply

```
{implements C = C + A^*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n
{read C(i,j) into fast memory}
{read column j of B into fast memory}
for k = 1 to n
C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}
```


Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply

- $m = n^3$ to read each column of B n times
 - + n^2 to read each row of A once
 - + $2n^2$ to read and write each element of C once

$$= n^3 + 3n^2$$

- So q = f / m = $2n^3$ / (n^3 + $3n^2$)
 - ≈ 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B Similar for any other order of 3 loops

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Recall:

m is amount memory traffic between slow and fast memory matrix has nxn elements, and NxN blocks each of size bxb f is number of floating point operations, $2n^3$ for this problem q = f / m is our measure of algorithm efficiency in the memory system So:

 $\begin{array}{ll} \mathsf{m} = \ \mathsf{N}^* \mathsf{n}^2 & \text{read each block of } \mathsf{B} \ \ \mathsf{N}^3 \ \text{times} \ (\mathsf{N}^3 \ ^* \ b^2 = \ \mathsf{N}^3 \ ^* \ (\mathsf{n}/\mathsf{N})^2 = \ \mathsf{N}^* \mathsf{n}^2) \\ & + \ \mathsf{N}^* \mathsf{n}^2 & \text{read each block of } \mathsf{A} \ \ \mathsf{N}^3 \ \text{times} \\ & + \ 2\mathsf{n}^2 & \text{read and write each block of } \mathsf{C} \ \text{once} \\ & = \ (2\mathsf{N} + 2) \ ^* \ \mathsf{n}^2 \end{array}$

So computational intensity $q = f / m = 2n^3 / ((2N + 2) * n^2)$

 \approx n / N = b for large n

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiply (q=2)

The blocked algorithm has computational intensity $q \approx b$

- > The larger the block size, the more efficient our algorithm will be
- > Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large
- > Assume your fast memory has size M_{fast}

 $3b^2 \le M_{\text{fast}}$, so $q \approx b \le (M_{\text{fast}}/3)^{1/2}$

 To build a machine to run matrix multiply at 1/2 peak arithmetic speed of the machine, we need a fast memory of size

 $M_{fast} \geq 3b^2 \approx 3q^2 = 3(t_m/t_f)^2$

- This size is reasonable for L1 cache, but not for register sets
- Note: analysis assumes it is possible to schedule the instructions perfectly

		required
	t_m/t_f	KB
Ultra 2i	24.8	14.8
Ultra 3	14	4.7
Pentium 3	6.25	0.9
Pentium3M	10	2.4
Power3	8.75	1.8
Power4	15	5.4
Itanium1	36	31.1
Itanium2	5.5	0.7

- Described a way to think about computation and memory computational intensity
- > Introduced the concept of blocking to increase computational intensity

Review Exercises

- > Explain in your own words:
 - Computational intensity
- Do a similar analysis computational intensity analysis for a different algorithm e.g. FFT