
Case Study – Matrix Multiplication

1

Introduction

›  Serve as an example of design exploration of matrix multiplication

› While examples are for a processor with cache, they are equally valid for an
FPGA with external memory

Outline

›  Performance Modeling

› Matrix-Vector Multiply (Warmup)

› Matrix Multiply Cache Optimizations

Why Matrix Multiplication?

›  An important kernel in many problems

-  Appears in many linear algebra algorithms

-  Bottleneck for dense linear algebra

-  One of the 7 dwarfs / 13 motifs of parallel computing

-  Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-
Warshall

› Optimization ideas can be used in other problems

›  The best case for optimization payoffs

›  The most-studied algorithm in high performance computing

Slide: James Demmel UCB

Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)

Em
be

d

SP
EC

DB G
am

es

M
L

HP
C

Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Slide: James Demmel UCB

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Slide: James Demmel UCB

Note on Matrix Storage

›  A matrix is a 2-D array of elements, but memory addresses are “1-D”
› Conventions for matrix layout

-  by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
-  by row, or “row major” (C default) A(i,j) at A+i*n+j

-  recursive (later)

› Column major (for now)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

Column major Row major

cachelines Blue row of matrix is
stored in red cachelines

Figure source: Larry Carter, UCSD

Column major matrix in memory

Slide: James Demmel UCB

Computational
Intensity: Key to
algorithm efficiency

Machine
Balance:
Key to
machine
efficiency

 Using a Simple Model of Memory to Optimize

Slide: James Demmel UCB

›  Assume just 2 levels in the hierarchy, fast and slow

›  All data initially in slow memory
-  m = number of memory elements (words) moved between fast and slow memory

-  tm = time per slow memory operation

-  f = number of arithmetic operations

-  tf = time per arithmetic operation << tm

-  q = f / m average number of flops per slow memory access

› Minimum possible time = f* tf when all data in fast memory

›  Actual time
-  f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

›  Larger q means time closer to minimum f * tf
-  q ≥ tm/tf needed to get at least half of peak speed

Warm up: Matrix-vector multiplication

{implements y = y + A*x}

for i = 1:n

 for j = 1:n

 y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

Slide: James Demmel UCB

Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n
 {read row i of A into fast memory}
 for j = 1:n
 y(i) = y(i) + A(i,j)*x(j)

{write y(1:n) back to slow memory}

•  m = number of slow memory refs = 3n + n2

•  f = number of arithmetic operations = 2n2
•  q = f / m ≈ 2

•  Matrix-vector multiplication limited by slow memory speed

Slide: James Demmel UCB

 Modeling Matrix-Vector Multiplication

› Compute time for nxn = 1000x1000 matrix

›  Time
-  f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

-  = 2*n2 * tf * (1 + tm/tf * 1/2)

›  For tf and tm, using data from R. Vuduc’s PhD (pp 351-3)

-  http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

-  For tm use minimum-memory-latency / words-per-cache-line
Clock Peak Linesize t_m/t_f
MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8
Ultra 3 900 1800 28 200 32 14.0
Pentium 3 500 500 25 60 32 6.3
Pentium3M 800 800 40 60 32 10.0
Power3 375 1500 35 139 128 8.8
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5

Mem Lat (Min,Max)
cycles machine

balance
(q must
be at least
this for
½ peak
speed)

Slide: James Demmel UCB

Simplifying Assumptions

› What simplifying assumptions did we make in this analysis?
-  Ignored parallelism in processor between memory and arithmetic within the

processor
-  Sometimes drop arithmetic term in this type of analysis

-  Assumed fast memory was large enough to hold three vectors

-  Reasonable if we are talking about any level of cache
-  Not if we are talking about registers (~32 words)

-  Assumed the cost of a fast memory access is 0
-  Reasonable if we are talking about registers

-  Not necessarily if we are talking about cache (1-2 cycles for L1)
-  Memory latency is constant

› Could simplify even further by ignoring memory operations in X and Y
vectors
-  Mflop rate/element = 2 / (2* tf + tm)

Slide: James Demmel UCB

Validating the Model

›  How well does the model predict actual performance?
-  Actual DGEMV: Most highly optimized code for the platform

›  Model sufficient to compare across machines
›  But under-predicting on most recent ones due to latency estimate

0

200

400

600

800

1000

1200

1400

Ultra 2i Ultra 3 Pentium 3 Pentium3M Power3 Power4 Itanium1 Itanium2

M
Fl
op
/s

Predicted MFLOP
(ignoring x,y)
Pre DGEMV Mflops
(with x,y)
Actual DGEMV
(MFLOPS)

Slide: James Demmel UCB

Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n
 for j = 1 to n
 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Algorithm has 2*n3 = O(n3) Flops and operates on
3*n2 words of memory

q potentially as large as 2*n3 / 3*n2 = O(n)

Slide: James Demmel UCB

Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n
 {read row i of A into fast memory}
 for j = 1 to n
 {read C(i,j) into fast memory}
 {read column j of B into fast memory}
 for k = 1 to n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)
 {write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Slide: James Demmel UCB

Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply
 m = n3 to read each column of B n times

 + n2 to read each row of A once
 + 2n2 to read and write each element of C once
 = n3 + 3n2
So q = f / m = 2n3 / (n3 + 3n2)
 ≈ 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Slide: James Demmel UCB

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Slide: James Demmel UCB

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where b=n / N is
called the block size
 for i = 1 to N

 for j = 1 to N
 {read block C(i,j) into fast memory}
 for k = 1 to N
 {read block A(i,k) into fast memory}
 {read block B(k,j) into fast memory}
 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
 {write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Slide: James Demmel UCB

Blocked (Tiled) Matrix Multiply

Recall:
 m is amount memory traffic between slow and fast memory
 matrix has nxn elements, and NxN blocks each of size bxb
 f is number of floating point operations, 2n3 for this problem
 q = f / m is our measure of algorithm efficiency in the memory system
So:

m = N*n2 read each block of B N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)
 + N*n2 read each block of A N3 times
 + 2n2 read and write each block of C once
 = (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
 ≈ n / N = b for large n
So we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (q=2)

Slide: James Demmel UCB

Using Analysis to Understand Machines

The blocked algorithm has computational intensity q ≈ b
›  The larger the block size, the more efficient our algorithm will be
›  Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot

make these blocks arbitrarily large
›  Assume your fast memory has size Mfast

 3b2 ≤ Mfast, so q ≈ b ≤ (Mfast/3)1/2 required
t_m/t_f KB

Ultra 2i 24.8 14.8
Ultra 3 14 4.7
Pentium 3 6.25 0.9
Pentium3M 10 2.4
Power3 8.75 1.8
Power4 15 5.4
Itanium1 36 31.1
Itanium2 5.5 0.7

•  To build a machine to run matrix multiply at
1/2 peak arithmetic speed of the machine,
we need a fast memory of size
 Mfast ≥ 3b2 ≈ 3q2 = 3(tm/tf)2

•  This size is reasonable for L1 cache, but not
for register sets

•  Note: analysis assumes it is possible to
schedule the instructions perfectly

Slide: James Demmel UCB

Summary

› Described a way to think about computation and memory – computational
intensity

›  Introduced the concept of blocking to increase computational intensity

Review Exercises

›  Explain in your own words:
-  Computational intensity

› Do a similar analysis computational intensity analysis for a different algorithm
e.g. FFT

22

